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AN EXPLORATORY INVESTIGATION OF WEIGHT ESTT'_TION

TECHNIQUES FOR HYPERSONIC FLIGHT VEHICLES

by Everett L. Cook
Wichita State University

INTRODUCT ION

Studies to determine the feasibility of hypersonic aircraft

(refs. 1-4) require a reliable method of weight prediction. This

report discusses the three basic methods of weight prediction and
some of the computer programs that have been developed to imple-
ment them. The need for a data base of component weights is also

discussed.

The WAATS program (ref. 5) was chosen as the best readily
available program for use in design studies of hypersonic air-
craft. The program was modified to improve its performance. The

modified program is presented, along with newly devised input data
forms azd an example problem.

METHODS OF WEIGHT PREDICTION

The categories of weight prediction methods are not clearly

defined; and there is always overlap in any categorization. In
this report, the methods will be defined as:

I. The Fixed-Fraction Method.

2. The Statistical Correlation Method.

3. The Point Stress Analysis Method.

The methods are listed in increasing order of complexity, and

each method has an area of applicability. Roland (ref. 6) dis-
cusses the three methods, using different terminology, and pre-

sents flow charts that indicate their relative complexity.

The Fixed-Fraction Method

This method is very simple; the weights of the vehicle com-

ponents are assumed to be a flxed-fraction of the empty weight or
takeoff weight. It is only valid when the vehicle being designed



is only a slight variation of an existing design. Gersh and Yozk
(ref. 7) give an example of this method and discuss the pitfalls.

The weight of the Hypersonic Transport (HST) used as an example
to demonstrate the use of the WAATS program is largely determined

by this method (ref. 8).

Caddell (ref. 9) presents a variation of the fixed-fractlon
method that is based on the relationship between the structural

weight and the aircraft density.

The Statistical Correlation Method

The Statistical Correlation Method is the most widei7 used

of the three methods. Many of the weight prediction procedures
use this method entirely, and most of the Point Stress Analysis

proET-ms use statistical correlation for some component weights.
The method is based on correlating historical weight d_ta using

a simple equation, usually

W -_AiXi Bi (I)

where W is the component weight,

A i is an empirically determined weight coefficient.

B i is an empirically determined exponent,

X i is a parameter.

The selection of the parameters, X i, is the key to the success of

obtaining good correlation. They may consist of one or more
characteristics of the component or the vehicle. For instance,
the wing weight equation used in the WAATS program is of the foxnm

W = AI(WT0- n • bST" S/tR) B1 + A2 • S + A3

+ A4(WLD G • n "baT" S/tR) B4 (2)

where WTO is the takeoff weight,

WLD G is the landing weight,

u is the ultimate wing load factor.

bST is the structur_l span.
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3 is the wing area,

t R is the wing thickness at the root.

The first and last parameters are the same except for the weights;

so that the wing weight can be based on the most critical condi-

tion, takeoff or landing. Since the parameter does contain a

vehicle weight (WTO or WLDG), the procedure is iterative. The

other characteristics in X 1 and X 4 are derived from the loads (n)

and the geometry (bsT, S and tH). The selection of these charac-

teristics should be based on an approximate analysis of the com-

ponent, where this is possible. Dimensional analysis may fre-

quently be used to detemrine nondimensional combinations of the
characteristics. The second and third terms in Eq. 2 (B2"I.0

and B 3 =0.0) allow the inclusion of weight items that vary with

the wing area or are fixed, respectively.

The number of equations used in a statistical correlation

weight estimation procedure may vary from less than ten (ref. 10)
to several hundred (ref. 6). Increasing the number of equations

does not automatically increase the accuracy of the weight esti-

mation procedure. However, the ability to predict the effects

of technology advances is enhanced as the number of equations

increases.

The Fixed-Fraction Method is a special case of this method,

with all Bi - 1.0 and all of the parameters Xi equal to a vehicle

weight.

The Space Shuttle Synthesis Progrsm--SSSP (ref. II), the

Weights Analysis of Advanced T_ansportation Syste_ns prosTam--

WAATS (ref. 5), and the Systems Engineering Mass Propertles pro-

grsun--SEMP (ref. 12) are NASA developed statistical correlation

programs for advanced transportation systems. As indicated by

its n-me, SSSP was developed to predict the weight of the Space

Shuttle. The WAATS program was developed from SSSP to permit

weight prediction for a wider range of high speed vehicles. The

SETUP program was developed specifically for Earth-to-orbit vehi-

cles, and thus is more general than SSSP, but not as general as

WAATS.

Gersch and York (ref. 7) describe a statistical correlation

program, WISE-ONE, which is used in the early phase of prelimin-

ary design at Grumman. It provides the capability of examining

a large number of designs in this phase. To complement the tabu-

lated output data, it generates a printer-plot of the configura-

tion.



In addition to descriptions of programs based on the statis-
tical correlation method, the literature also contains informa-

tion on specific component weight estimation techniques. The
Papers of the Society of Allied Weight Engineers are an excellent

source of information of this type. Some examples are:

Fuselage Structure. -- Simpson (ref. 13) discusses an analy-
tical method and computer program for fuselage structure weight
prediction. Equations are given for various i_ems (floors, pres-
sure bulkheads, doors, windows, etc.).

Thermal Protection Systems. -- Roland (ref. 14) presents
techniques for calculating the unit weights of two types of heat
shields and the thickness and weight of bulk insulation.

Fessenden (ref. 15) discusses both passive and active thermal

protection systems and presents equations for calculating unit
weights.

Engines. -- Klees and Fishbach (ref. 16) present a method of

estimating both the dimensions and the weight of gas turbine
engines. They demonstrate the method with a detailed example
problem.

Propellant Tanks and Systems. -- Conrad (ref. 17) discusses
the e_fects of tank construction on the weight of propulsion sys-

tems using cryogenic liquids. Equations for tank thicknesses and

weights and pressurization gas and system weights are given.
Willoughby (ref. 18) presents a semi-empirical method for cal-

culating tank weights for nine common configurations. Both pump-
fed and pressure-fed pressurization systems are also considered.

Systems and Equipment. -- Roland (ref. 6) presents 132 equa-
tions for predicting the weights of various aircraft systems and

equipment items. He also presents correlation curves for many
of the equations.

The Point Stress Analysis Method

The Point Stress Analysis method, as such, is only applic-

able to the major structural components of the vehicle, i.e., the
wing, tail, fuselage, landing gear, etc. The weight estimate is

based on the material required to carry the loads at representa-
tive "points" in the component. This requires the specification
of both the component loads and the allowable stresses. Due to

the complexity of this method, a computer program is a necessity.

The weights of the nonstructural items are normally calculated
with statistical correlation equations.

The majority of the programs in this category have been de-

veloped by individual aerospace companies and are proprietary.
However, the Structural WEight Estimation Program--SWEEP (ref. 19)
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was developed by Rockwell International for the Air Force and is

available from the Air Force Flight Dynamics Laboratory. It was
developed for military aircraft weight estimation (cargo, fighter,
fighter bomber and attack bcmber), so modifications would be re-

quired to adapt it to weight estimation for hypersonic aircraft.

In addition to the statistical correlation program, WISE-

ONE, Gersch and York (ref. 7) also describe Grumman's WISE-TWO
program which uses the point stress analysis method to calculate

the wing and tail weights. Al_houEh this program does not use
point stress analysis for the fuselage, it has an option to

stretch or shrink the fuselage to accommodate the required fuel
load.

The literature also contains some information on point
stress analysis weight estimation techniques for individual ccm-

ponents, but the number of papers is not as great as for statis-

tical correlation methods. Two examples are:

Fuselage Structure. -- Staton (ref. 20) presents a FORTRAN
program for calculating the basic shell weight for an unpressur-
ized fuselage. The weight penalties associated with the design
features are discussed and an example for a typical fighter/
attack airplane is given.

Landln_ Gear. -- Kraus (ref. 21) describes a computer pro-
gram which can be used to estimate the weight of aircraft land-
ing gear. The loads are first calculated and then the strut
member sizes are estimated.

DATA BASE

The requirement for reliable weight estimation procedures
for all classes of flight vehicles will continue to exist as long
as these vehicles are being designed. And the verification of

these procedures will continue to be based on historical data.
Thus, a comprehensive data base of component weights would be

invaluable to weight engineers involved in advancing weight esti-
mation technology. NASA could make a significant contribution to

this field by sponsoring a project to compile such a data base
and make it available to the aerospace industry.

THE WAATS PROGRAM

WAATS--Welghts Analysis of Advanced Transportation Systems--

was developed (ref. 5) to provide a program that could be used
either with the ODIN--Optimal Design INtegratlon--System or as a



stand-alone program. It uses the statistical correlation method
and relies heavily on the equations developed for the Space

Shuttle Synthesis Program--SSSP Cref. 11). However, a number of
equations are included which did not come from the SSSP.

Of the readily available programs, WAATS appeared to be the

only one that could be used for hypersonic aircraft feasibility
studies without major modification. When an attempt was made to

implement the program using the listing in ref. 5, a numbor of
minor errors were discovered. Further investigation revealed

that the program could be made more efficient by recoding. The
modified program is given with a discussion of the modifications

to each subroutine. This is followed by a description of the
input data and a set of newly devised input data forms that

should make the program easier to use. Finally, an example
problem is preseuted to demonstrate the use of the program.

Main Program

The main program is essentially the same as the original--
the four primarF subroutines (DATA, INPUT, MASS and PRINT) are
called, with all of the data being transferred through named com-

mon blocks. However, some of the common block and subroutine
names have been changed. The dimensions have also been changed

and are transmitted to the subroutines through the new common
block, SIZES. The input and output unit numbers are also trans-

mitted through common, so only the main program has to be changed

when the dimensions or input and output numbers have to be changed.
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Subroutine DATA

This subroutine still performs the same basic purpose as the

original, i.e., the initialization of the design data (IC and C),

the weight coefficients and exponents (AC) and the weights (W).
However, there are several major changes:

lo All initialization is done with arithmetic statements,
instead of a combination of arithmetic and data state-

ments.

. The real design data (C) is first set to 0.0. Selected
values are then specified. The specified values are

given both in the RAATS Design Data listing and Input
Data form.

o The weight coefficient and exponents are also initially

set tc 0.0 and theu selected values are specified. The

specified values are based on a study of the equations
in ref. 5. In cases where there were more than one

equation; high speed, rocket powered aircraft were taken
as the reference.

The component weights are all set to 0.0, as in the original
subroutine.
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Subroutine INPUT

As in the orlglnal subroutine the design data and the coef-
ficients and exponents for the weight equations are read with a

namelist statement. The non-zero weight coefficients and expo-
nents are then printed. The major change is that all of the

design data is printed in tabular form to facilitate checking.

//
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Subroutine MASS

This subroutine has been completely reorganized With a few

_xceptlons, the component weiEhts that do not depena on the Take-

off, Landing or Entry weight have been taken out of the iteration

loop. A flow chart of the subroutine developed directly from the
coding is shown following the subroutine listing.

The program has a shape flag, ISHAPE, for specifying the
vehicle confiEuration:

ISHAPE = 1 Booster Type (no wings or tail)

ISHAPE = 2 Aircraft

ISHAPE = 3 Lifting Body

ISHAPE TM 4 Lifting Body plus Wing

A study of the flow chart shows that there are only two paths

through the program; i.e., ISHAPE - 1 and 3 are the same configu-
ration, as are ISHAPE - 2 and 4. Therefore, the Input Data Forms

provide only for ISHAPE = I and 2.
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ISUBROUTINE MASS I

l
[NPUT

CQMMCN
C3MI,N_ N

CQM_N

COMMON

COMMON

IINOUT/ NR,NW (CARO

IINTGR/ IC(3)

ICCMON/ C(42)

IACOEF/ AC(L34)
/AT_OUT/TEtTHETAtCELTA,PEtRI'(}E,GEtCSEtAMUE

OUTPUT

CCMMON /W_ITS/ W(7_)

CATA

C L3-O. 2333333

C23m0,6666667'

PT2_3000.O

INITIALIZE THE TJKECFF, LANCING ANC

i WTO:WTGIN
WLANC=WLANDI

WENTR_-WLANO

L
TCTAL THRUST

TTOT-THRUST*ENGINS*_CTRJ

BGOY STRUCTURE

READER AND PRINTER)
(INTEGER CONSTANTSI

(REAL CONSTANTS)

(CCEFFICIENTS)
(SUBROUTINE ATM(]S)

REENTRY WEIGHTS

WBASI C=AC( L%l =SB(]DY÷AC( L5 )=( (ELECCY_'XLFIHEODY I i,,PO. [5_,qMAX*t'O. 16
=SBCDY==L.O51'|'_AC(B/)÷AC(16)

W SEC ST-AC ([7) I, SBCOY÷ AC 118 )
WTHRST=AC(LgI_'TTOTeAC(20)

W[ NFI_T= AC ( 130 ) sVFUT Ke AC ( 13L )
W[NOXTzAC (L32) t, VOXTKeAC (133)

WBCOY=WBAS I C4.WSECST ÷WTI-RSTeW INFUT ÷W INOXT

THERMAL PROTECTION SYSTEM 1

W) N.CUL=AC ( 2 L ) _,ST PS4,AC ( 76 IJ
WCOVER"AC( 22 )1'STPS_'AC( 7711

WTPS-W[ NSUL÷WCCVER /

25"
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/
I RAMJET ENGINE

WENG S=,AC ( 82 )_'TT GT÷AC (83 l

I zcRYl

I RCCKET ENGINE
WENGS-AC (28 )*TTOT +AC( 29 } eTTOTeARATIOt'SAC( 30 }÷&C(3[) =ENGINS

LwGI MBL-AC ( 55 )_' ( 750. O* ( T TCT/ENG I NSIPCHAi, )_1,_,L .25 ) eeAC ( 1 10 ] ÷ AC ( 56 )

CRYOGENIC FUEL SYSTEMS

kl FUNCT_, AC ( 36 I _'V FUT K ÷AC ( 37 )
WOXCNT=AC (_.SISVC]XTi(÷AC139)
W INS FT= AC (¢0 )eS FUTK +AC ( 61 l

WINSOT=AC (62 l _SCXTK÷ACI _,3 |

WFUSYS =AC (64)*TTOT÷AC(_S|_,ELBODY÷6C [46)

WOXSY S,,AC I_? ) ITTOT+ JC 16.81 _'ELSCOY+AC (t,9 I

WPRSYSIAC (_0) _'VFUTKe'AC (51) _',_OXTK÷AC (52)

STORAm_LE PROPELLANT FUEL SYSTIE_S

GAL=7.68 LeVFUTK
WFUNCT•AC (36) s( G AL/TANKS ) _0.6STANKS ÷AC ( 37 )

WBPUMP=TT_T_ ( L.75÷0. 266W_EhG I NS)tO.OOL
WOISTI=,AC | 1061*ENG [NSSSQRT (TTOT/ENGINS)
WOI ST2,,O. 255_'GAL*_'0.7" TANI(S_'_'0.25

WFCONT-O. 169')TANKS_'SQRT( G4L )

WREF UL=T ANK S_l. ( 3.0÷0. e.5 _I'GA LeI'C Z 3 )
WCRANS:,,O. 159*GAL e')O .65
WSEA L,,O. 0_,5_, TANK S_, ( G AL/T Ah KS | _'_'0.75

_FUSYS"WBPUNP÷WO I STI÷WO[ ST2÷WFCONT+WREFUL÷WORANS÷kSE _L
WPR SYS=O • 0009_. TTCT _,T ANKS

-.29



INLET SYSTEM

WIO--X INLET_'S_RT(AICAPT/X INLEI" )
THPFCT s 1 • 0

Y

F
WIOUCTsAC( 531"1 SQRT( ELNLET*X[ NLET) _.1AICAPT/XINLET 1,*C131

,I,PT2S_,C 23_G EOFCT.t'FCTMOK ) _'_'AC ' 56 }÷AC( I05|

'dVRAMPsAC ( 106),1_ ( ELRAMP*k[ O*TMPFCT)_I, s6C (107) •AC (L08 ]
WSP IKE"AC ( 1.09 leXINLET
WINLETsWI OUCT4"WVRAMP+WSPI KE

_I TM PFC T"O,, 203*ON_.O. 41

I ENGINE MCUNTS i
WENGMT-AC(IO2)eTTOT÷AC[Z03I

1
WPROPU-WENGSeWFUNC T_ kCXCNT*W l hSFT*W [ NSCTeWFUSYS,WeXSYS÷WPRSYS I_WINLET_WENGMT

PROPELLANTS

3O

WFUELV..NPNA Ih/(1.0÷OF]
WOXIDM=_FUELM*OF

WFRESV-AC (84)_NFUELH÷JC (85)
WGRE S V.. AC (86) _'WOX I OH_'AC (87)
WPR E SV,,W FR E SV *WOR ESV

WPLCSS-AC (]..!.6 |_¼PNAIN
WFUEL-WFUELM_'WFRESV

WC]X [ 0" WOX I 0 IM÷_C t_ESV
NFTR AP'AC (c)2) t'NFUEL÷AC ( ¢J3 )
WCTRJP,,,AC i 94) _WCX ID+ACi 95 )

NFUTG T:,,WFUE L 4"NFTR AP
NCXTOT,,WOX l O÷WOTR AP

WP=WFUTOT÷WO:_1CT

WRES I [_"WFTR AP+WCT R _P

_CRE¼-AC(72)*CREW+AC(73)



lITERATE QN ThE WEIGHTS I

1
NCzO

-t

IAE_GOYNA_[C SURFACESI

ll_' ISI-APE J

WII[NG=,tC ( L IIIWTG_'XLF*STSPAN*SW [NG/TROOT )**AC179 )*]..OE-06 i
• AC{ 2l =SWING_AC I 3)
_.4C ( LL7 )* ( WLAND_'XLF _'STS PAN'i'SW ING/TROOT_'L.OE-09 } ==AC ILLS! {

WVERT=AC(_IeSVERT_'*AC( 8<; I÷AC (5l J
WHORZ=AC (6)'I=((WTO/SW ING) *_'O,.6*SPORZW'*I.2=eQMAX_'_'O. 8)_'l'AC(¢}O),t.AC(7)_

4.AC| 1L9)=((WLANO/SkINGII'_'O,6*SHORZ*=i'I.2=GMAX_,_,O,8)_'=PAC(1.20) J

WF AI R"AC (81*SFAIR÷ACI91 !
WSURF-WW I NG÷W=VERT÷WHORZ+WFA IR]

i
LAUNCH AND RECOVERY SYSTEP4S

WLANCH=,AC !23) *WTO÷AC |2_ )
WLG=AC (25) ,oWTO*I,AC {IOL) ÷AC( 26 )*WLAND*=AC (121 )_'AC (27)
WGEAR"WLA NC H+ WLG

31



32

ORIENTATICN AN_ SEPARATION SYSTEMS

WACSFU,,AC ( g6I_WWTO÷AC (_7) ÷AC (136)_,WENTRY
W JCSOX=WACS FU'I, OFACS
W AC SP,,:WAC SFU÷WAC SeX
WACSRE=AC ( I ].5)sWACSP

WACSsAC( 57_. _'WTG_AC (58) +AC(59) ÷AC 112_ )_'WENTRY_'_'AC (125)
W .QCSTK" AC ( ,_4 ) 'I'W ACSP÷ AC ( 65 I

WAERO=AC ( 60 ) $ ( WT0"4'_'C23_ ( ELBCDY+GSPAN ) _'*0.25) _'$AC ( 1 [ [ )÷&C(6 L )

÷AC( 122)s(WENTRYI'_C 231'(ELBCDY÷GSPAN)SSO. 251_'=AC (Z23)
W SEP=AC (62 }_'WTIJ÷AC (63)

W(]RNT-WGIMBL_.WACS÷WAC STK÷WAERC÷WSEP

PI2WER SUPPLY

WELECT=AC (66) _,ISQRT {WTO)SELeOOy_o,25 )**AC ( 112l÷AC(671
÷AC(126)',(SQRTIWENTRY)*ELBC['}y**o.25)¢.AC(127)

WPY PNU- AC {68 )t ( ( SW INGcSMORZ ÷SVERT ) _,(_.CO [ O'['QMA X) _'_'0.33_

_,(SQRT( ELBQCY÷STSPANI_TYTAIL)_,_AC(;13)÷AC(6(_I
÷AC( 128 ) _'WTO÷AC ( 12g ) _WENTRY

WPWR SY=WELECT÷WHYFIN U

AVICNICS ANC CREW SYSTE.qS

WAVONC-AC {7C) *W T[J_I-I,AC (11_,) ÷AC 171 )
WCPRqV=AC (74) _WTC+AC(80) IwCREW÷AC (75)

I
T

[ DRY WEIGHT AND DESIGN RESERVE J

IDRY'WSURF+WBODY+W TP ScWGEA R+WP RCPU ÷WCRI_T +W PWRSY +WAVONC_.WCPROV
WCGNT-AC (98)_'WDRY+AC (¢.9)

1
EMPTY, LANDINGt ENTRY AND TAKEOFF WEIGHTS

WEMPTY-WDRY+_CCNT

WLANO=WEMPTY÷WPAYLD÷WCREW+WRESID÷WACSRE

WENTRY=WLAhO+WACSB

WTC-WENTRYeWPMAIN_WFRESg_wPLOSS

WRITE

Y

PRINT THE WEIGHTS jNC,WORY,WEMPT'Y, WLANO, WENTRY,WTO
i

N

 )RETURN]

t)_.,.±,;i.'K._.LPA{2=E IB



Subroutine ATMOS

This subroutine has been extensively revised. The input is

the geometric altitude (ft). The output, through common block
ATMOUT, is the temperature (°R), the temperature ratio, the pres-

sure ratio, thepressure (psf), the density (pcf), the gravita-
tional acceleration (ft/sec2), the speed of sound (ft/sec) and

the coefficient of viscosity (lb/ft-sec). Although the outpu_ is
all in English units, all internal calculations are in $I units.
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Subroutine PRI_

The only modifications to this subroutine were format

chanEes to improve the readability of the Weight Statement.
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Input Data

The input to the program consists of two types of data--

design data and weight coefficients and exponents. The design

data describes the vehicle, while the weight coefficients and

exponents define the equations that will be used to calculate

the weights. The variable names, the compiled values of the var-

iables and their definitions are tabulated on the following

pages. Since the data is read with a NAMELIST Statement, only

those values that differ from the compiled values need be input.

Design Data. -- The path through the program is determined

by the values of the Integer Design Data: ICRY (Propellant Type),

IENG (Engine Type) and ISHAPE (Vehicle Configuration). There are

two propellant types (storable and cryogenic) and three engine

types (turOoramJet, ramjet and rocket). The program also pro-

vides for four vehicle configurations:

i. Booster Type (no wings and tail)

2. Aircraft

3. Lifting Body

4. Lifting Body plus Wing

However, the path through the program is the same for shapes

1 and 3, and is the same for shapes 2 and 4. This gives a

total of only twelve combinations, which can be reduced to ten by

omitting the storable propellant-rocket engine combination. The

input data forms discussed in the next section have been prepared

for these ten combinations. Note that the compiled values of the

Integer Design Data define the same vehicle configuration (cryo-

genic propellant, rocket engine and aircraft shape) as the ori-

ginal WAATS program, but the Engine Type Indicators have been

rearranged. The majority of the Real Design Data is set to zero:

however, selected values have been specified to reduce the amount

of input data.

Note that the takeoff and landing weights must be estimated.

These estimates are only used for the first iteration, so they

need not be accurate.

Weight Coefficients and Exponents. -- The most difficult task
in preparing the input data is the specification of the Weight

Coefficients and Exponents. The input data form in the next sec-

tion simplifies the task by showing which values must be speci-

fied for each vehicle configuration. In addition, the equations

of ref. 5 have been studied and values of the coefficients and

exponents have been specified, where possible. In cases where

ref. 5 gives more than one set of coefficients and exponents for
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a component, the values specified are for high speed and/or rocket

powered aircraft. Some of the equations have one term with take-

off weight as the parameter and another term with Isnding or entry

weights as the parameter. In these cases, the coef:icients and

exponents for the takeoff weight term are specified. The expo-

nents not otherwise specified are set to I.OE-6 to eliminate error

messages when the program is run on an IBM computer.
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SYMBOL

ICRY

IENG

ISHAPE

ACTR
AICAPT

ARATIO
CREW

OH
DM
ELBCDY

ELNLET
ELRAMP

E_GINS
FCTMCK

GEOFCT
GSPAN

HBOOY
OF
OFACS
PCHAM
PHIGH
PLOW

Q WAX

S BODY
SFAIR
SFUTK
SHORZ
SOXTK
STPS
STSPAN
SVERT
SWING
TANKS
THRUST
TRCCT
TYTAIL
VFUTK
VOXTK
'4 AREF

COMPILED
VALUE

1.0
O.O

0.0
2.0
0.0

L.O
0.0
0.0

0.0
2.0

[.0
Z.O

0.0
L.O

6.0
0,0

LO00.0

176.0
46,0

0.0
O.O
0.0
0,0
0,0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
I .25
O.0
O.0
0.0

WAATS DESIGN DATA

DEFINITION

PROPELLANT TYPE INDICATOR_
ICRY= t STORABLE.
ICRY=2 CRYOGENIC.

ENGINE TYPE INOICATOR,
IENG=I TURBORAJWJET.
IENG"2 RAMJET.

IENG=3 ROCKET.
SHJPE FLAG,

ISHAPE=,L BOOSTER TYPE (NO WINGS OR TAIL).
ISHAPE=2 AIRCRAFT.
ISHAPE-3 LIFTING BODY,

ISFARE==4 LIFTING BOOY PLUS WING.

THRUST SCALING FACTOR.
TOTAL CAPTURE AREA GF INLETS, SQ. FT,
ROCKET ENGINE AREA RATIO (AIRCRAFT).
NUMBER OF CREW MEMBERS.

DESIGN ALTITUDE, FT.
DESIGN MACH NUMBER.
BCDY REFERENCE LENGTH, FT.
TOTAL INLET LENGTH, FT.
TOTAL R_MP LENGTHe FT.
NUMBER OF ENGINES.
MACH NUMBER FACTOR.
GECMETRICAL OUT OF ROUND FACTOR.

GECMETRIC WING SPAN, FT.
MAXIMUM BODY l-EIGHT, FT,
OXIDIZER TO FUEL MIXTURE RATIO BY WEIGHT.
ACS OXIDIZER TO FUEL MIXTURE RATIO BY WEIGHT.

ROC/(ET ENGINE CHAMBER PRESSURE, PSIA.
TURBCRAMJET INLET PRESSURE (UPPER CURVE), PSIA.

TURBORAMJET INLET PRESSURE (LOWER CURVEI, PSIA.
MAXIMUM DYNAMIC PRESSURE, LB/SQ. FT.
TOTAL BCOY wETTEC AREAt SQ. FT.
TOTal FAIRING OR ELEVON SURFACE PLANFORM, SQ. FT.
FUEL TANK WETTEC AREA, SO. FT.

TOTAL HORIZONTAL SURFACE PLANFORM AREA, SO. FT.
OXICIZEC TANK WETTED AREA, SQ. FT.
THERMAL PROTECTION SYSTEM AREA, SO, FT.
WING STRUCTUAL SPAN (ALONG 50 PERCENT CHORD)t FT.
TCTAL VERTICAL SURFACE PLANFORM AREA, SO. FT.
THEORETICAL WING AREA, SO. FT.
NUMBER OF FUSELAGE FUEL TANKS.
THRUST OF OfWF ENGINE, LB.
WING THICKNESS AT THEORETICAL ROOT, FT.
TAIL TYPE COEFFICIENT.
VCLUME OF FUEL TANK, CU. FT.
VOLUME OF OXICIZER TANK, CU, FT.
REFERENCE ENGINE AIRFLOW, LB/SEC,
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SYV_CL

WLAhDI
WPAYLD
WPMAIN
WT(]IN

X INLET

XLF

COMPILED
VALUE

0.0
0.0
0,0
0.0

£.0
_.0

WAATS _ESIGN CATA

OEFINITIQN

ESTIMATED LANDING WEIGHT, LB.
WEIGHT OF PAYLOAD, LB.

WEIGPT OF MAIN IMPULSE PROPELLANT, LB.
ESTIMATED TAKEOFF WEIGHT, LB.
NUMBER CF INLETS.
WING ULTIMATE LOAD FACTOR.

=



COEF.

AC{ L)
AC(2)
At(3)
AC(41
AC(S)
AC(6)
AC! 7)
AC(8)

AC(10)
AC( If!

AC(12}
ACI 13)
AC(14)
AC( LSI
AC! 16)
AC(LT)
AC(IB)
ACI 191
AC(20)
AC(21)
AC I 22
AC123 )
AC(24)

AC(25}
ACI 26)
AC(271

AC(28)
ACE 29)
ACI 30}
ACT31)
AC (32)

AC(23)

AC(341

AC I"=5)

ACI36)
AC(3?)

ACI 381
AC (39 )
..%C(40 )

_C(4L!
AC142|

AC ( 43 )
AC ( 44 l

AC It,5)

WAATS WEIGPT COEFFICIENTS ANO EXPONENTS

COMPILED
VALUE ;EF INITION

2905.0
0,0
0.0
5,0
0.0
0.00035
0.0
0.0
0.0

0.0
0.3,_L
0.0
0.98
0.0
0.0025
0.0
0,0
0.0
0.0
0.0
0.31
0.0
0.0
O ,00766
0.00033

0.5
130.0

I782.63

0,003

l_q#,53

0.0032

0.53
0.0
[.25
0.0
0.59
0.0
0.23
0,0
0.0
0.0

WING WEIGHT CGEFFICIENT.
WING WEIGHT CCEFFICIENT.

FIXED WING WEIGHT.
VERTICAL TAIL WEIGHT COEFFICIENT
FIXED VERTICAL TAIL WEIGHT.
HORIZONTAL TAIL WEIGHT COEFFICIENT.
FIXE_ HORIZONTAL TAIL WEIGHT.
FAIRING WEIGHT COEFFICIENT.
FIXEC FAIRING WEIGHT.

NOT USED.
NOT LSED.
NOT tEED,
NOT USED.
BODY WEIGHT COEFFICIENT.

BODY WEIGHT COEFFICIENT.
FIXEO BODY WEIGHT.
SECC_NDARY STRUCTURE WEIGHT COEFFICIENT.

FIXED SECCNOAPY STRUCTURE WEIGHT.
THRUST STRUCTURE WEIGHT COEFFICIENT.
FIXED THRUST STRUCTURE WEIGHT.
INSULATION WEIGHT COEFFICIENT.

COVER PANEL WEIGHT COEFFICIENT.
LAUNCH GEAR WEIGHT COEFFICIENT.
FIXEC LAUNCH GEAR WEIGHT.

LANDING GEAR WEIGHT COEFFICIENT.
LANDING GEAR WEIGHT COEFFICIENT.

FIXEO LANOING GEAR WEIGHT.
ROCKET ENGINE WEIGHT COEFFICIENT.

ROCKET ENGINE WEIGHT COEFFICIENT.
ROCKET ENGINE WEIGHT EXPONENT.
FIXED ROCKET ENGINE WEIGHT.
TURBORAMJET ENGINE WEIGHT COEFFICIENT

(LOWER OESIG_ PCINT).

TURBORAMJET ENGINE WEIGHT EXPONENT
{LEWER DESIGN POINT).

TURBCRAMJET ENGINE WEIGHT COEFFICIENT
(UPPER OESIGN POINTi.

TURBORAMJET ENGINE WEIGHT EXPCNENT
(UPPER DESIGN POINT).

FUEL TANK WEIGHT COEFFICIENT.
FIXEr FUEL TAnK WEIGHT.
OXIDIZER TANK WEIGHT COEFFICIENT.
FIXEC OXICIZER TANK WEIGHT.
FUEL TANK INSULATICN WEIGHT CCEFFICIENT.
FIXEC FUEL TANK INSULATION WEIGHT.
OXIDIZER TANK [NSULATICN WEIGHT COEFFICIENT.
FIXEC OXIDIZER TANK INSULATION WEIGHT.

FUEL SYSTEM WEIGHT COEFFICIENT.
FUEL SYSTEM WEIGHT COEFFICIENT.

_'_ I,,-,,, . .
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COEF.

_C(461
._CI 47)
ACI48I
AC ( 49 I
AG(_01
ACI51)
.,'C( 52 )
AC( .=31
aC(54)
ACI 55)
AC(56)
o,C( 571

_C ( 58I
AC ( 59 I
AC(6O|
ACI 61 )
_u_I62!

ACI 63 )
_C(64)
AC!65)
_C(66 )
_CI 671
sC {5B )

AC(69)
AC(7Ol
AC( 71 )
ACT72)

,IC{73)
AC( 741
AC(T5)
AC i 76 )
_C( 771
,sO(78)
AC( 70 )
_C (80)
aC(81l

_C(E2)
•_C(83)
A3 ( _4 |
AC(_51
_C( e6l
_C I _7 )
AC (88|

ACID9)
_CleO|

AC(g2)

WAATS

COMPILED
VALUE

O.O
O.O

O.O
O.O
O .45

2 ._5
O.O

_.345
L.O
0.0

0.0
78.5

0.079

0.0
0.323

0.0
0.0
0.0

O.LO
0.0

I .L67
0.O
2.64
0.0

66,37

0.0
220.0

0.0

0.0
0.0

0.0

0.0
O .608

0,O
L,O
O.L
O.O

0.O
O.0

0.0
0.O

l .Og

L.O
0.0
0.0

WEIGPT COEFFICIENTS AND EXPONENTS

DEFINITION

FIXED FUEL SYSTEM WEIGHT,
OXIDIZER SYSTEM WEIGHT COEFFICIENT.
OXIDIZER SYSTEM WEIGHT COEFFICIENT,
FIXED OXIDIZER SYSYEM WEIGHT.
FUEL TANK PRESSURE SYSTEM WEIGHT COEFFICIENT.

OXIDIZER TANK PRESSURE SYSTEM WEIGHT COEFFICIENT.
FIXE(3 PRESSURE SYSTEM WEIGHT.
INLET WEIGHT CCEFFICIENT,
INLET WEIGHT EXPONENT,
GIMBAL SYSTEM WEIGHT COEFFICIENT,
FIXED GIMBAL SYSTEM WEIGHT,
ATTITUDE CONTROL SYSTEM SYSTEM WEIGHT

COEFFICIENT,
ATTITUDE CONTROL SYSTEM SYSTE._I WEIGht EXPONENT.
FIXED ATTITUDE CONTROL SYSTEM SYSTEM WEISHT,
AERCCYt_AMIC CONTROL SYSTEM WEIGHT COEFFICIE_IT.
FIXED AERODYNAMIC CONTROL SYSTEM WEIGHT.
SEPARATION SYSTEM WEIGHT COEFFICIENT,

FIXED SEPARATION SYSTEM WEIGHT.
ATTITUDE CONTROL SYSTEM TANK WEIGHT COEFFICIENT.

FIXED ATTITUDE CONTROL SYSTEM TANK WEIGHT.
ELECTRICAL SYSTEM WEIGHT COEFFICIENT.

FIXED ELECTRICAL SYSTEM WEIGHT,
HYDRAULIC/PNEUMATIC SYSTEM WEIGHT COEFFICIENT.

FIXED HYDRAULIC/PNEUMATIC SYSTEM WEIGHT.
AVIONIC SYSTEM WEIGHT COEFFICIENT,
FIXED AVIONIC SYSTEM WEIGHT,

CREW WEIGHT COEFFICIENT.
FIXED CREW WEIGPT.
CREW PROVISIONS WEIGHT COEFFICIENT,
FIXER CREW PRCVISIONS WEIGHT.

FIXED INSULATION WEIGHT.
FIXED COVER PANEL WEIGHT,
WING WEIGHT EXPCNENT.
NOT USED.
CREW PROVISICI_S WEIGHT COEFFICIENT.

BODY WEIGHT EXPCNENT.
RAMJET ENGINE WEIGHT COEFFICIENT.
FIXED RAMJET ENGINE _EIGHT.
RESERVE FUEL WEIGHT COEFFICIENT,
FIXED RESERVE FUEL WEIGHT.
RESERVE OXICIZER WEIGHT COEFFICIENT.
FIXED RESERVE OXIDIZER mEIGHT,
NOT USED.
VERTICAL TAIL WEIGHT EXPGNENT.
HORIZONTAL TAIL WEIGHT EXPONENT.
FIXED TURBCRA/_JET ENGINE WEIGHT,
RESIDUAL FUEL WEIGHT COEFFICIENT,
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COEFo

AC (_3)
AC(94!
_CI _5)
AC(S6)

AC(S7)

ACId8)
AC ( 9e !
AC ( LO0 )
ACE I01 )

AC(102)
JC (103 I
AC( 1041
AC ( 10 5 |
AC(106)
AC (I07 )
AC ( 108 |
AC ( 109 )
AC{IIOI

AC( IIi )
ACt llZ I
AC { 113 I
AC( llZ_|
AC{ L15 )

AC( 1161
AC(117)
ACIILSI
ACI I19 )
AC (120 )

AC( 12l )
AC ( 122 )
AC( 123 )
AC(124)
ACI 125 )
ACt. }26)
AC ( L27 |
AC ! 128 )
AC ( 129 )
AC 1130 )
ACI 131)
AC ( L32 )
AC(133)
ACI134)

WAATS

COMPILED
VALUE

0,0
0.0
O,O

0.0

0.0

0.0

0.0

0.795

0.0001
0.0

0.31.6
0.0

117.35
0,294
0.0

0.0
1. .OE-6
O • 903
1..0
L.O
0.361

0.0

0.0
0.0

I.OE-6
0.0
1..OE-6
1.0E-6
0.0
1..OE-6
0,0
1. ,OE-6
0.0
1.. OE-6
0.0
O.O
O.O
0.0
0,0
0,0
0.0

aEIGMT COEFFICIENTS AND EXPONENTS

DEF INITION

FIXED RESIDUAL FUEL WEIGHT.
RESIDUAL OXIDIZER WEIGHT COEFFICIENT.
FIXEC RESIDUAL OXIDIZER WEIGHT.

ATTITUDE CONTROL SYSTEH PROPELLANT WEIGHT
CCEFFICIENT.

FIXED ATTITUDE CONTROL SYSTEM PRCPELLANT
WEIGHT.

CONTINGENCY AND GROWTH WEIGHT COEFFICIENT.

FIXEC CONTINGENCY AND GROWTH WEIGHT.
NOT LSEO.
LANDING GEAR WEIGHT EXPONENT,

ENGINE MOUNT WEIGHT CCEFF[CIENT.
FIXEC ENGINE MOUNT WEIGHT,

FUEL DISTRIBUTICN SYSTE_ WEIGHT COEFFICIENT.
FIXED INLET WEIGHT,

RAMP WEIGHT CCEFFICIENT.
RAMP WEIGHT EXPCNENT.
FIXE£ RAMP WEIGHT.
SPIKE WEIGHT COEFFICIENT.
GIMEAL SYSTEM WEIGHT EXPONENT,
AERODYNAMIC CONTROL SYSTEM WEIGHT EXPONENT.
ELECTRICAL SYSTEM WEIGHT EXPONENT,

HYDRAULIC/PNEUMATIC SYSTEM WEIGHT EXPONENT.
AVIONIC SYSTEM WEIGHT EXPONENT
RESIDUAL ATTITUDE CGNTRCL SYSTEM PRePELLANT

WEIGHT COEFFICIENT.

PROPELLANT INFLIGHT LCSS _EIGHT COEFFICIENT.
WING WEIGHT COEFFICIENT,
WING WEIGHT EXPCNENT,

HORIZONTAL TAIL WEIGHT COEFFICIENT.
HORIZONTAL TAIL WEIGHT EXPONENT.
LANDING GEAR WEIGHT EXPONENT.

AERODYNAMIC CCNTRCL SYSTEM WEIGHT COEFFICIENT.
AERODYNAMIC CCNTROL SYSTE_ WEIGHT EXFCNENT.

ATTITUDE CONTROL SYSTE_ WEIGHT COEFFICIENT.
ATTITUCE CONTROL SYSTEM WEIGHT EXPONENT.

ELECTRICAL SYSTEM WEIGHT COEFFICIENT.
ELECTRICAL SYSTEM WEIGHT EXOCNENT.
HYDRAULIC/PNEUMATIC SYSTE_ WEIGHT COEFFICIENT.
HYOqAULICIPNEUWATIC SYSTEN WEIGHT COEFFICIENT.
INTEGRAL FUEL TAN_ WEIGHT COEFFICIENT,
FIXED INTEGRAL FUEL TANK WEIGHT.
INTEGRAL OXIDIZED TANK _EI_HT COEFFICIENT,
FIXEC INTEGRAL QXIDIZER T_NK WEIGHT.
ATTITUDE CONTROL SYSTEM FUEL WEIGHT

CEEFFICIENT,

.... t9



Input Data Forms

Input data forms are shown on the following pages for both
the design data and the weight coefficients and exponents. Two
types of forms were originally considered. The first type con-

sJsted of ten separate forms for the ten possible paths through
the progrsam. The other type, which is the one shown, has pro-

visions for all ten paths on & single set of forms. The first
column of these forms are the variable names, which can be corre-

lated with the definitions given on the preceding pages, and the
second column gives the compiled values of these variables. The

remaining ten columns provide blocks for entering the values of
the variables. If a block is fil_ed with X's, a value is not

required.
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Example Problem

The hypersonic cruise transport ¢HST) studied in ref. 8 was

chosen to demonstrate the use of WAATS. The basic configuration

(Fig. I) is a blended wing-body with a single vertical tail.
The fuselage and wlng are actlvely-cooled al_mlnum alloy, while

the vertical tail is uncooled Inconel 718 (Table I). A water-
glycol coolant is circulated through passages in the wing and

fuselage skins. Heat shields are also used on the lower surface
of the wing aft of the leading edge and on the portions of the

fuselage with the highest heat loads.

The propulsion system consists of four turbofan r_mjet en-
gines and nine variable-geometry scramjets. The turbojet engines

are used from takeoff to Mach 3, at which point the adjustable

inlet door (Fig. I) closes off the turbojet ducting. The ramjet
engines operate from low transonic Math numbers to the Mach 6
cruise condition, with subsonic combustion at the lower Mach

numbers and supersonic combustion at cruise.

The fuel for both propulsion systems is liquid hydrogen car-
ried in two tanks, one forward and one aft of the passenger/cargo

compartment. The non-integral tanks are of multicell or "pillow"
constz_uction (Fig. 1). The material is Inconel 718. Polyure-
thane foam insulation is used for thermal insulation of the tanks.

The fuel is also used as a heat sink for the fuselage, wing and

scramJet cooling systems.

Tables I and II (reproduced from ref. 8) give the majority

of the data required for the analysis. Additional data will be

presented as it is used.

The preparation of the input data forms will be discussed
first. This will be followed by the input and output listings

and a comparison of the WAATS Weight Statement with the HST Weight
Slunmary given in ref. 8.

Design Data. -- The input data forms are sbown on pages 52-
59. Since the HST has two types of engines and WAATS allows the

specification of only one type of engine, a choice had to be made
as to the basic engines for the analysis. The turbojet engines

(ICRY= l) were selected because the weight calculations for these

engines are complex, while the ramjet engine weight can be easily
calculated and input as a fixed weight. The fuel being liquid

hydrogen gives ICRY = 2. The vehicle shape (Fig. l) is that of
an aircraft, so ISHAPE I 2. These three parameters define the

applicable column in the input data forms. The entries in the
forms consist of asterisks, if the compiled value is used. and
the values to be used, when the compiled values are not to be

used.
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TABLE I

BASELIN]_ HST SUMMARY CHARACTERISTICS

.Mission

Cruise Math number .

Payload weight

Payload volume

Performance

Fuel

O_ers Cions

.... "_'2 06o
453 =3 (16 000 ft3)

........ liquid hydrogen

Flight cyzles for structural design ..... 20 000

Vehicle

Aero configuratlon: blended wing-body with single vertical Call

per reference 2, modified to enhance precompression and accom-

modate propulsion system installation.

General arrangement: non-int:egra! fuel tanks fore and aft;

centrally located payload compartment.

Acce!erator/loi_er engines: four P&W STF-230A-cy_e

Crulselaccelerator engines: horizontal array of dual-

comhgstion-mode , variable-geometry scramjets

Design and structures

Wing: actively-cooled aluminum alloy per reference 4

Vertical tail: uncooled [nconel 718 per reference &

Fuselage: actively-cooled aluminum alloy per reference 3

5cra_jets: actively-cooled, twe-dlmensional modules

Propulsion installation: per reference 6

Fuel _anks: mul_icell Inconel 718 per reference 3
Thermal management: airframe cooling system and operating

temperatures per reference 4, 5 and 6; external hea_ shields on

portions of wing and _uselage _o reduce cooling load per

references 3, 4 and 5; hermetically sealed po!yure_hane foam

insulation system for fuel ranks.

_eij___i

Gross =eke-off weight of Zl8 &O0 kg (48i 400 !b)

Technolosy level

Presently postulated or i.-anediacely foreseeable
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TABLE I I

AIRPLANE CONFIGURATION AND WEIGHT SL%_SIARY DATA

Fuselage length, 1F .......

Reference area (projected wing), S

Wing loading a= take-off, (W/S)GT O

. 91._ m (300 ft)

866 m" (9323 ft')

252 kglm 2 (51.6 iblft 2)

Wing thickness ratio, t/c .....

Vertical tail area, SV .......

Payloa_ compartment volume .....

Total fuel tank volume

. _ 0.03

94.8 m 2 (1020 ftZl

453 m 3 (16 000 ft 3)

1020 m3 (36 000 ft 3)

Total turbojet thrust (S.L. static),

TTj NTj i 032 000 N (232 000 ib)

Maximum thrust-weight ratio at take-off, (T/W)GT 0
0.482

ScramJec nodule size: 0.927 m x 0.927 m (3.04 ftx 3.04 ft) inlets

6.4 m (21 ft) length

Dry airplane weigh=, W
e

..... 123 200 kg (271 600 Ib)

Fuel weigh=, W c
"T

69 400 kg (153 CO0 ib)

Gross :ake-off weight, WGT 0 .... 218 400 kg (43! 400 ib)

Dry airframe/gross =ake-off weight, Ne/_GT 0
0.5641

•. T,

Payload/gross take-off weight, _pL/_GTO
0.-038

Main fuel/gross _.ake-off weigh=, " 'WNf., ,' GTO
0.]173
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The inlet capture area (AICAPT) is not specified in ref. 8
for the turbojet engines. From Fig. I, however, it appears to be

approximately equal to capture area of the ramjets, which is 83.2
ft z (Table II), so this value will be used. Also from Fig. I, it

appears from the flight deck layout that there are provisions for
three crew members (CREW=3.). The altitudes at the beginning and

end of cruise are given on page 2-31 of ref. 8; the latter (DH=
94 600 ft) was chosen as the design altitude. The design Nach

number (DM=6.) is given in Table I, while the fuselage length
(ELBODY= 300. ft) is given in Table II. The inlet and ramp lengths

(ELNLET = 58. ft and ELRAMP = 20. ft) were scaled from Fig. 1. The
Mach number factor (FCTMOK=I.5) and the geometrical out of round

factor (GEOFCT= 1.33) used in calculating the duct weight are de-
fined in ref. 5, page 57.

The geometric span (GSPAN= 112.5 ft) is shown in Fig. i, and

the maximum body height (HBODY= 16. ft) was scaled from the same
figure. Since the fuel is liquid hydrogen, with no oxidizer, the
oxidizer to fuel mixture ratio (OF) must be set to zero. The max-

imumdynamlc pressure (QMAX=948. lb/ft 2) was taken from ref. 8,
page 2-34. The surface area of che body (SBODY = 19 000. ft 2) was

approximated by scaling Fig. l, as was the surface area of the
fuel tank (SFUTK=4500. ft2). The vertical tail area (SVERT= 1020.

ft 2) and the wing area (SWING=9323. ft z) are given in Table II.

Ref. 8, page 2-32, states that heat shields are used on the
lower surface of the wing and fuselage, but does not give the

total area. However, it does specify the unit weight as 0.9
lb/ft 2 and the total weight is given in Table III as i0200 lb;

therefore;

STPS = i0 200./0.9 = Ii 333. ft 2

The structural span (STSPAN= 109.5 ft) and the wing thickness at

the root (TROOT= 3.3 ft) were scaled from Fig. I. The tail type
coefficients (TYTAIL= i.) was assumed to be that for a conven-
tional tail (ref. 5, page 71). The fuel tank volume (VFL_K=
36 000. ft 2 ) is given in Table If. The reference engine airflow

(WAREF - 400. Ib/sec) was chosen arbitrarily and is discussed in a
later section. The estimated landing weight (WLANDI = 400 000. ib)
and the estimated takeoff weight (_rrOIN= 500000. ib) were also

chosen arbitrarily. The payload weight (WPAYLD = 50 000. Ib) is

given in Table I.

The main propellant weight is given in Table II as 153000.

lb. This includes a climb fuel fraction (KCL = 0.40), _ descent

fuel fraction (KD=0.02) and a reserve fuel fraction (K R= 0.10);

which leaves 48 percent of the total fuel for cruise (ref. 8.

pages 2-22 and 2-27). WAATS has provisions for a main impulse
propellant weight and a reserve fuel weight coefficient. For
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this example these are taken as WPMAIN= 136 000. Ib and AC(84)=

0.125, to give the correct total propellant weight.

Ref. 8 does not specify the load factors. However, much of
the data used in this reference is derived from refs. 22- 24. In

ref. 22, page 159; a vertical load factor of +2.0 g with an ulti-

mate factor of safety of 1.5 is specified. These values will be

used to give XLF= 3.

Weight Coefficients and Exponents. -- As can be seen from the

input data forms, the compiled values are used for the majority of

the weight coefficients and exponents. Therefore, only the equa-
tions for which the compiled values are superceded will be dis-

cussed. The equations will be considered in the order in which

they appear in ref. 5.

Wing and Body Structure: The compiled values are those for

high speed aircraft with high temperature construction. Provi-
sions are not made for the actively-cooled aluminum structure of

the HST; therefore, the compiled values will be used.

Thrust Structure: The equation for the thrust structure for

airbreathing engines is given in Fig. 3.2-3 of ref. 5 as

WT = 0.00625(TTOT) + 69

Thus AC(19)=0.00625 and AC(20)=69.

Thermal Protection System Cover Panels: The unit weight of

the heat shields was specified in the preceding section, i.e.,

AC(22) = 0.9.

Landing Gear: The landing gear weight is assumed to be a

function of the landing weight, not the takeoff weight; therefore,

from ref. 5, Fig. 3.4-2, AC(26) =0.00916 and AC(121) : 1.124. Note

that AC(25) and AC(101) must be set to zero.

Engines: The compiled values of the coefficients and expo-

nents were used to calculate the weight of the turbojet engines.

The airflow through the engines (WA =WAREF • ACTR) could not be

calculated from the available data. so they were assumed (WAREF =

400. Ib/sec and ACTR = i.) to make the engine weight approximately

equal to that given in ref. 8. The weight of the ramjet engines

is included as a fixed engine weight by using AC(82) = 0.I and

dividing the result by four to get an equivalent fixed weight per

turbojet engine, i.e.,

AC(91) = 0.I x 157000./4. = 3925. Ib/engine
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Engine Mounts: The engine mount weight coefficient (AC(I02) =

0.004) suggested in ref. 5, page 41, was used.

Fuel Tank Insulation: The basic fuel tank insulation weight

coefficient was calculated using the equation in Fig. 3.5-6 in

ref. 5 and the suggested radiating temperature of 500°F, giving

AC(40) = 0.0007(500.)+0.24 = 0.59

This was then corrected for flight duration using Fig. 3.5-7.

Note that the maximum time on this curve is 7000. sec, while the

flight time specified for the HST is 7200. sec. Therefore, the

maximum value on the curve was used, giving

AC(40) = 0.59x 1.04 = 0.61

Fuel System: The equation for the fuel system weight given

in ref. 5, page 52, is

WFUSYS = AC(44) * TTOT + AC(45) • ELBODY + AC(46)

The weight coefficients AC(44) and AC(45) are given in Fig. 3.5-9,

where the maximum thrust is only I00000. lb. Equations were writ-

ten for these curves, but the values calculated for a thrust of

232 000. ib were not realistic, so ref. II was consulted. This

reference (pages 55- 56) recommends values of AC(44) = 0.0015 to

0.003 for liquid hydrogen and AC(45) = 0. The largest recommended

value (AC(44) =0.003) is used.

Pressurization Systems: The weight of the fuel pressuriza-

tion system is given in Fig. 3.5-11 of ref. Z as

WT = 0.45 • VFUTK

This equation gives a very high weight for the system. Ref. ii,

Fig. 5.1-7, page 60, shows a carpet plot of the equivalent weight

coefficient. AT liquid hydrogen storage temperature and a pres-

sure of 25 psi (ref. 2, page 2-37), the coefficient is approxi-

mately one-tenth of the coefficient in the equation above. This

value (AC(50) =0.045) is used.

Attitude Control System: Eel. $ does not mention an attitude

control system for the HST, so AC(57) and AC(58) were set to zero.
a

Crew Provisions: Table 3.9-1 of ref. 5 was used to select

these coefficiemts. The equipment environmental control weight

coefficient (AC(74) = 0.0005) was taken directly from the table.
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The fixed crew provisions weight (AC(75)=400.) was taken as the

sum of the items in the third column of the table. The crew pro-

visions weight coefficient (AC(80)= 260.) was taken as the sum of

a 100-1b seat and the remainin_ items in coltmm 2 of the t_ble.

Trapped Fuel: Ref. 5, page 80, gives a range of AC(92)=

0.005 to 0.03. The average value (AC(92)=0.018) was used.

Reserve Fuel: See the discussion on the maJ- propellant

weight in the previous section.

Inflight Losses: The inflight loss fraction is assumed to

be AC(II6) = 0.028 to give the same losse_ as predicted in ref. 8.
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Input and Output Listings. -- The input data listing is

shown on the next page, followed by the output listing. The in-

put data was taken directly from the input data forms, _cept

that the number of fuel tanks (T._NKS -2.0) is specilied. This

number is not used; but since there are two tanks (Fig. i) and

the number _s printed in the output, it was included.

The output consists of the NAMELIST listing, a list of the

non-zero weight coefficients, two tables of the design data, a

mass iteration table and the Weight Statement. The NAMELIST list-

ing is superfluous, since all of the input data is also printed

in the list of non-zero weight coefficients or the tables of de-

sign data. The mass iteration table shows the principal weights

at the end of each iteration loop. If reasonable values are used

for the estimated takeoff and landing weights, the convergence is

very rapid.
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INPUT OATA - HST EXAMPLE

EINkAP TENG=[,
JICAPT=83,2,
CREW=3.0,
0H=94600.0,
OM-6.0t
ELBODY=3OO.Ot
ELhLET=S8.0t
ELRAMP=20oO_
ENGINS=_.Ot
FCTNOK=L°St
GEOFCT=l.33,
GSPAN=LI2.St
hBGOY=16oOt
CF=O=Ot

CNAX=g48.0,
SBCOY=19000.O,
SF_TK=6500oCt
STPS=11333.0,
STSPAN=IO9.S_
SVERT=IO20.Ot
SWrNG=9323.0,
TANKSa2.0t
THRUSTiSSOOO.Ot
TRCOT=3.3t
TYTAIL=L.Ot
VF_TK=36000.O,
WAREF=4OO,Ot
WLANDI=4COOOO.Ov
WPAYLD==5OOOO.Ov
WP_A[N'[36COO.Ov
WTGIN=5OOOOOoOv
XLF=3.Ot
AC(Lq}=O.O0625,
=C{20)=69.0,
ACI22)=O.9t
AC(25)=O.Ot
AC(26|=0.00_[6,
aC(40)=0.61,
AC(_4)=0.003,
JC(501=0.045,
AC(57)=0.0,
JC(_8)=O.O,
aC(T_l=O.O005,

AC(TS)=_O0.O,
JCl80)=260.0,
AC(_I-O.L25,
aC(911=3925.0t
AC(;2)-0.018,

ACII01}=O.O
AC(1021=0.00#,
aC(116)=0.0316,
aCII211=L.12_,CENO

76



0OI IILg NO 4'QO_ _qO m

'= '"* "i0 * - 0000

• ,,°oo oo.g_
m _ _1000

•-*O O0 _ 0 000 0 000¢)00

_:,,.. _ °o. ..................

-i_ °°:.o. °. _°°............. _, _'_'_'??

o o.g 2 o._.- o.o.*.o.-. -: o.

;_._-. ooo_..................
0 oCl *

. o._=. .
-.oZO .o_ _ oo ;

_._. oooo--= _ o-o_-...2._°oooooo.......

o,.,..o _ - g o-o

_¢:N ¢: * 0_ 0_'0o" 0 ,.10 _'00_*
• _00¢:0o * o 0_1 • OOe_

0

- _!_ -_.°° ...... _ ..... . .....
_,_._ .

_'° 0000

_=": _,_ ...................
"-. - 0530.0 ..................._,_,

• O¢r'

• .

-. -_ - .....................

• 000000 0

0 0 _; 0,-_ 0 "J 00000 " 0" _'----0 Z:

• 77



NCN-'Z_RO _EXGHT CCEFF[C[ENTS

aC( Zi " 2905.00
JUT.( 4) = 5.00000
aC( 6) = .350000E-03
AC! 15) :, .341000
aC( 17) = .980000
aC( 1(;) = .625000E-.02
AC( 201 1' 69.0000
AC(22) = .900000
At{ 261 - .916000E-02
AC(28) = .766000E-02
aC( 2(J) = .3._0000E-03
_tC(30) = .500000
AC{ 31) = 130.000
AC( 32l ,, 1782.63

( 331 = .300000E-02
AC(34) = 1996,53
AC(35) = .320000E-02
ACi 36) ,, .530000
AC(38) ,, 1.25000
At( 40! ,, .6100C0
AC( 42) " .230000
M:;! 44) = .3C0000E-02
AC( 50l = .450000E-01
at( 51) = 2.45000
AC(53) = _,3_500
ACf 54) = 1,00000
AC( 60J = .323000
AC( 64l =. .100000
AC( 66) = 1.£67C0
AC( 681 = 2.64000
_( 701 " 66.3700
ACI 72} = 220.000
AC(74) = .5C00COE--03
AC( 75_ ,= 400.000
AC( 781 = .6C80C0
AC( SO) " 260,000
AC( 81) - 1.00000
AC(82) = .100000
JU_l 84) = .125000
AC( 89, _ = 2.09000
AC(90) = £.00000
AC( qll = 3925.00
AC( _21 = .180000E--01
AC( 102| =, .4C00COE-02
aC (t 0,_ ) = .316000
AC(].06) = 117.350
Ju_(107) = .294000
AC(IIO) = .10C000E-05
AC(£LL| = .903000
AC(112) = 1. COO00
aCILL3) = 1.00000
•_,C(114) = .361000
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NCN--ZERrl WEIGHT COEFFICIENTS

AC(ll6) = • 31601_0E'-01
aC(1181 -_ • IO(IO00E-05
AC (12C1) ,_ • 1 C(1000E-05
^CII211 ,, 1.12_00
AC( 123} = . l CO000 E-'05
AC( 12_il = .ICGOiIO&'05
AC (127) =, • 100000 E--O5
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DESIG_ DATA

WETTEDARE._S

GROSSBODY
FUEL TANKS
OXIDIZER TANKS

PL _,.N AREAS

WING
VERTICAL SURFACES
HORIZONTAL SURFACES
FAIRLNGS
THERMAL PRCTECTION SYSTEM

O!MENSICNAL DATA

WING GECMETRIC SPAN
WING STR_CTUPAL SPAN
WING THICKNESS AT THEORETICAL ROOT
TOTAL INLET CAPTURE AREA
ROCKET ENGINE AREA RATIO
TOTAL INLET LENGTH
TOTAL RAMP LENGTH
BODY LENGTH
BOOY HEIGHT
FUEL TANK VOLUME
OXIDIZER TA_K VOLUME

ENGINE DATA

ENGINE TYPE
NUMBER OF ENGINES

THRUST OF ONE ENGINE
THRUST SCALING FACTCR
NUMBER OF INLETS
REFERENCE ENGINE AIRFLOW
ROCKET ENGINE CHAMBER PRESSURE
TURBORAMJET INLET PRESSURE (UPPER)
TUR_ORAMJET INLET PRESSURE (LCWER)

WEIGHTS

PAYLGAO
MAIN I"FULSE PPOPELLA_T
ESTtMATEO TAKECFF _EIGHT
ESTIMATED LANDING WEIGHT

19000.00
4500. CO

0.0

9323.00
1020.00

0.0
O.0

11333.00

L12.50
109.50

3.30
83.20

O.C
58,00
20.00

300.0C
i6.00

3_000.00
0.0

TURBORAMJET
4.00

58000,00
L.CO
L.O0

400.GO
LO00.CO

176,U0
46.0_

_0000.00
L36000.00
500000.00
40O000.00

8O



DESIGN DATA

OTHER DESIGN DATA

NUMBER CF CREW
DESIGN ALTITUOE

OESIGN MACH NUMBER
MACH NUMBER FACTCR
GEOMETRICAL CUT OF ROUND FACTCR
OXIDIZER TO FUEL MIXTURE RATIO
ACS OXIDIZER TO FUEL MIXTURE RATIO
MAXIMUM DYNAMIC PRESSURE
NUMBER OF FUSELAGE FUEL TANKS
TAIL TYPE COEFFICIENT
ULTIMATE LOAD FACTOR
PROPELLANT TYPE
SHAPE

3.C0
946 OO. O0

6,¢0
L,50
1.33
0.0
0.0

q48.00
2.00
t. CO
3.00

CRYOG_=NIC
AIRCRAFT
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MASSITE_ATIQN

ORY ENPTY LANO! NG ENTRY TAKEOFF
NO WEIGHT 14EIGHT WE ! GI_T WEIGHT WEIGHT

1 243798. 243798. 297212. 297212. 454509.
2 235992. 235_2o 289406. 289_06. 446703.
3 235L_2. 23SL42. 288556. 288556. 445853.
4 235049, 235049. 288463. 288%63. 445761.
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_ E [ GH T S T A TE ME NT

AERODYNAMIC SURFACES
_[NG
VERTICAL SURFACES
HCRIZONTAL SURFACES

FA IR INGS

3358_.
9514.

O.
O.

_3098.

BQOY STR_CTURE
eASIC STRUCTURE

SECONDARY STRUCTUP E
THRUST STRUCTURE
INTEGRAL FUEL TAN_(S

|NTEGRAL OXIDIZER TANKS

58110.
L8620.

1519.
O.
O.

?8269.

ENVIORNMENTAL PROTECTION SYSTE'4
INSULATION O.

COVER PANELS 10200,

10200.

LAUNCH AND RECOVERY SYSTEMS
LAUNCH SYSTEM
LANDING GEAR

12566.

MAIN PROPULSION SYSTEM
ENGINES 42118,

ENGINE MOUNTS 928,

FUEL TANKS 19080,
OXIDIZER TANKS Oo
FUEL TANK |NSULATTON 2765.

OXIDIZER TANK [NSLLATICN O.

FUEL SYSTEm 6S6.
CXIDIZER SYSTEM O.
PROPELLANT PRESSURIZATION SYST 1620.
INLET SYSTEM 7521.

74T08,

GRIENT_T|ON AND SEPARATION SYSTEMS
GIMBAL SYSTEM O.
ATTITUDE CONTROL SYSTEM O,
ATTITUDE C_NTOL SYSTEM TANKAGE O.

AERODYNAMIC CONTROL SYSTEM 3[66.
SEPARATION SYSTEM O.

3166.

POEER SUPPLY
ELECTRICAL SYSTE_
HYDRAULIC/PNEUMATIC $YSTEP

6393.

aVIONICS SYSTEM 7267 •

CREW SYSTEMS 1¢03.

DRY WE IGHT 235069.
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WEIGHT STATEMENT

CRY WEIGHT 235049.

DESIGN RESERVE O.

EMPTY WE IGH=T 235049.

PAYLOAD 50000.

CREW 660.

RESIDUAL PROPELLANTS 2754.
TRAPPED FUEL 2754,

TRAPPEO OXIDIZER O,

LANDING WEIGHT 288463,

aTTITUDE CONTRCL SYSTEM PRCP=LLANTS O,
FUEL O.
CXIDIZER O,

ENTRY WEIGHT 288_3 ,

PAIN PROPELLANTS 136000.
FUEL 136000.
CXIDIZER O.

RESERVE PROPELLANTS 17000 ,
' FUEL 17000,
CXIDIZER O.

INFL IGHT LOSSES _208.

TAKECFF WEIGHT _576 I,

l
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Comparison of Results. -- The Weight Summary for the RST is
shown in Table III (adapted from ref. 8, page 2-42). Since there

is not a one-to-one correspondence between the weight items in

the WAATS Weight Statement and the HST Weight Summary, the weight

breakdown shown in Table IV will be used for the comparison.

Each weight item in the table will be explained and discussed.

The Empty Weight, Landing Weight and Takeoff Weight will then be

discussed.

Aerodynamic Surfaces, Controls and Cooling System: The HST

"Aero Structure" weights include the control system, while this is

a separate item in the WAATS Weight Statement. Conversely, the

cooling system for the wing and fuselage is a separate item in

the HST Weight Summary. Thus, the WinE, Vertical Tail and Aero-

dynamic Control System weights are summed to obtain the total

WAATS weight item. The HST Weight item consists of the Wing, Ver-

tical Tail and one-half of the Cooling System weight. The cooling

system weight is equally divided between The wing and fuselage°

since their wetted areas are almost equal. The resulting weights

differ by only two percent.

Body Structure and Cooling System: The WAATS Body Structure

weight is taken directly from the Weight Statement. The HST

weight item includes the Body Structure (Covers, Frames and Com-

partments), Compartment Insulation and one-half of the Cooling

System weight. The WAATS welgbt is eleven percent larger than

the HST weight.

Environmental Protection System: This item is identified as

Cover Panels in the WAATS Weight Statement and External Shields

in the HST Weight Summary. The unit weight and the areas of the

cover panels were selected to make these weights equal.

Launch and Recovery Systems: The HST landing gear is forty-

four percent heavier than the WAATS weight estimate. The corre-

lation curve (Fig. 3.4-2, ref. 5) for landing designed gears

shows very good correlation, so the WAATS result is assumed to be

a good approximation.

Engines and Mounts: The WIATS weight item includes the En-

gine and Engine Mount Weights, while the HST Weight item consists

of the Turbojet and ScramOet weights. The reference engine air-

flow (WAREF=400. Ib/sec) was arbitrarily selected to give a_prox-

imately the same weight as the HST estimate. The resulting total

weights are within four percent of each other.

Inlet System: These items are identified as the Inlet System

in the WAATS Weight Statement and as the Turbojet Air Induction

in the HST Weight Summary. The HST estimate is almost sixty per-

cent larger than the WAATS estimate. The correlation curves in

ref. 5 (Fig. 3.5-12 for the inlet and Fig. 3.5-13 for the ramp)

"'4
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TABLE III

WEIGHT SUMMARY - BASELINE HST AIRCRAFT

Group Item

Aero S_ruc_ure, WW Wing
wz Vertical Tail

Body S_ruc_ure, W F Covers
Frames

Compartments

Propellant Systems, Wps Tanks

Fuel/Pres/Lub Systems

Thermal Protection, WTp External Shields
Cooling System

Co_artment Insulation
Tank Insulation

Turbojet Propulsion,WTj Turbojet Engines
Turbojet Air Induction

ScramJets, WR2

Avionics, WAV

Equipment, WEqul p Launch and Recovery
Prime Power & Distributior

Payload Provisions

Dry Airplane. W
e

Personnel, Residuals and Prime Power Reserve

Payload, WpL

In-Fligh_ Losses

Main Fuel, W:
"T

We_ Airplane & Payload

Gross Take-Off Weigh=, WGT O

Welghc

kg

14 800

3 i00

15 300

4 700

7 900

15 000

2 400

4 500

6 900

500

3 400

Ii 400

5 500

7 400

1 450

8 200

3 500

7 270

123 000

1 140

22 700

l&7 000

2 000

69 400

21S 400

Ib

32 600

6 900

33 600

I0 40O

17 410

32 900

5 200

i0 200

1.5 300
I 200

7 590

25 000

12 000

16 200

3 200

IS i00

7 800

16 000

271 600

2 500

SO 000

9_3.w.lOO

4 300

153 000

481 400

S6



T_BLE IV

CCMPAR[SCN CF WAATS ANO HST WEIGHTS

JERODYNAM[C SURFACESo CGNTRCLS ANO COOLING SYSTEM

ECDY STRUCTURE AND COCLIhG SYSTE_

ENVIORNMENTAL PROTECTION SYSTEM

LAUNCH AND RECCVERY SYSTEMS

ENGINES ANO MOUNTS

INLET SYSTEM

FUEL TANKS

FUEL TANK INSULATION

FUELt PRESSURIZATIQN AND LUBRICATIQN SYSTEMS

FCWER SUPPLY

AVIONICS

CREW SYSTEMS ANO PAYLC_O PRCVISIONS

E_PTY WEIGHT

PAYLOAD

CREW AND RESIDUALS

LANCING WEIGHT

PROPELLANTS

INFL IGHT LOSSES

TAKEOFF WEIGHT

WAATS

¢6 264

78 249

LO 200

tZ 566

63 C46

7 52L

1.9 080

2 7¢5

2 316

3S3

7 ZfT

i 403

z3s

50 000

3 _14

HST

4T 150

70 Z60

10 ZOO

L8 LO0

;Z 200

ZZ 000

3Z 900

7 590

5 200

7 800

3 ZOO

L6 000

271 600

SO 000

2 500

288 463

t53 000

4 298

445 76Z

32_ 100

L53 000

300

• 8[ _00

8T



show good correlation. However, the data is for military jets
with inlet systems different than that used on the HST. There-

fore, the HST estimate is probably the most accurate.

Fuel Tanks: The estimated weight of the HST fuel tanks is

seventy-two percent larger than the value calculated by WAATS.

The only data available in ref. 5 (Fig. 3.5-5) is for an integral
fuel tank based on the X-15 concept, while the HST ranks are non-

integral. Therefore, the WAATS estimate is open to question.

Fuel Tank Insulation: The HST fuel tank insulation weight
is almost three times that calculated in WAATS. There is no cor-

relation curve in either of ref. 5 or 11, so the source of the

WAATS weight coefficient is not known. The HST weight item in-

cludes a helium purge system and hydrogen boil-off during a 30-
minute ground hold (ref. 8, page 2-37), but this probably does

not entirely account for the large difference.

Fuel, Pressurization and Lubrication Systems: The WAATS

weight item is obtained by summing the Fuel System and Propellant

Pressurization System Weights. The lubrication system is not a
separate item in the WAATS Weight Sum_Rry, so it is assumed to be
included in the engine weight. The HST weight item is taken dir-

ectly from the Weight Summary. The WAATS weight estimate is again
very low, approxlmately one-half of the HST value. As indicated

in the Weight Coefficients and Exponents section, there were
questions about the coefficients for both the fuel and pressuriza-

tion systems; therefore, further study of these coefficients is
recommended.

Power Supply: In the WAATS Weight Statement, the Power Supply

consists of the Electrical System and the Hydraulic/Pneumatic

System. In the HST the Prime Power and Distribution consists of
(ref. 8, page 2-41)

Engine or gas generation 2150. Ib

Tank and systems 1050. Ib

Electrical distribution 3500. ib

Hydraulic and pneumatic ii00. ib

The electrical and hydraulic/pneumatic system weight are very

nearly equal for the WAATS and HST analyses. The other items may
be included in the engine weight in the WAATS program.

Avionics:

8, page 2-39)

The HST Avionics weight is broken down into (ref.
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Guidance and navigation 800. lb

Instrumentation 400. Ib

Co_lunicat ions 2000. lb

The WAATS estimate is based on the correlation curve shown in

Fig. 3.8-1 of ref. 5. The correlation is not good and the data
is for much lighter aircraft than the one being considered here.

Therefore, the WAATS estimate, which is more than twice the HST
value, may not be realistic.

Crew Systems and Payload Provisions: The WAAT3 Crew Systems

weight includes the equipment and personnel environment control
system, crew compartment insulation, personnel accommodations,
fixed life support equipment, emergency equipment, crew station
controls and panels (ref. 5, p. 75). In ref. 8, page 2-41, the

Payload Provisions are stated to be a substantial weight item,
but are not described. However, in ref. 23, pages 8-9, Personnel

Provisions are broken down into accommodations for personnel,

fixed life support, furnishings and cargo handling, emergency

equipment, and controls and panels. The equipment descriptions
are similar, but the HST weight item is over ten times the WAATS

weight item. The large discrepancy may he due to the fact that
the vehicle of ref. 23 has a payload of 200 passengers plus car-

go, while no provisions are made in the WAATS analysis for pas-

senger accommodations.

Payload: The payload is the same in both analyses.

Crew and Residuals: The Crew and Trapped Fuel weights are

summed to obtain the WAATS weight item. The HST weight item is
listed as Personnel, Residuals and Prime Power Reserve, but the

term Prime Power Reserve is not explained. The resulting weights

differ by approximately thirty-seven percent.

Propellants: The WAATS Main Propellant and Reserve Propel-
iants were adjusted to give the same total weight as the HST

analysis (see the Design Data section).

Inflight Losses: The WAATS weight coefficient was chosen to
make the WAATS weight item equal to the HST weight item.

Empty Weight: Since there is no Desi6n Reserve, the Dry and

Empty Weights are the same in the WAATS Weight Statement. This
weight is sixteen percent lower than the HST Dry Airplane weight.
However, if the major weight items--the Aerodynamic Surfaces, the

Body Structure and the Engines--are compared, the difference in

weights is only six percent. Thus the system weights account for
the majority of the Empty Weight difference.
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Landing Weight: Without an Attitude Control System, the
WAATS Landing and Entry Weights are the same and within twelve

percent of the HST Wet Airplane and Payload Weight.

Takeoff Weight: The difference between the Takeoff and Land-

ing Weights for the two analyses is the same, so the final differ-
ence is reduced to eight percent.

In general, the results of the WAATS analysis are considered

to be good. Since the HST weights are also estimates, their ac-
curacy is open to question; although they are based on a much more
detailed study than was possible for the W_ITS analysis. There
are a number of areas where the WAATS equations and their coeffi-

cients and exponents should be thoroughly reviewed. The systems
area should be given special attention. This would be much more
feasible if the data base discussed previously were available.

It should also be noted that as a design develops, and more accur-
ate data becomes available, the W_TS program can be used to up-

date the weight estimate very rapidly and inexpensively.

CONCLUSIONS

Of the three methods of weight prediction--flxed-fraction,
statistical correlation and point stress analysis--the statistical

correlation method is probably the best for preliminary design.

The modified WAATS program is considered to be a good tool for

feasibility studies of hypersonic aircraft; however, some areas
need further investigation. The specific areas, primarily sys-
tems weights, are noted in the comparison of the WAATS results

with the HST weights. Further development of this, and other,

weight estimation programs would benefit from the availability of

a comprehensive data base of component weights.
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APPENDIX

THE WA.ATS EXAMPLE PROBLEM

The example problem in ref. 5 was not used as the principal

example in this report because very few details were given on the
vehicle for which the weight was being estimated. However, in

order to verify that the modified program gives the same results

as the original program, the example is presented on the follow-

ing pages. The completed Input Data Forms, an Input Data Listing
and the pzinted output are presented; Note that there are more

non-zero weight coefficients printed than in ref. 5 because of
the specified values in the modifed program. All of the weights
are within one pound of the values given in ref. 5.
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INPLT OATA - WAATS EXAMPLE

;[_WAP ARATIO=@O.O,
CH=60000.0,
0_=4.5 •
ELBQOY-350. O•
ENGINS=22.0,
GSPAN-L6Z.O,
HBCOY=ZO o0,
¢_AX"2500. O•
$8C_0Y=32800.0,
SHCRZ=I. O,
STPS=42300.0,
STSPtN=93.71 •
SVERT" L380.0•
S_I|NG=LLS7?.Ot
TANKS"2, O,
THP UST =470000 • 0 t
TR(_OT" LL• 66
VFUTK=I43ZOO.O,
VOXTK-53LO0. Ot
W_REF=122.7t
kLANO| =900000° Ot
HPAYLD-40000.O•
_PI, A I N=,4400000.0,
HTC | N_=7000000. O,
XLF=3.75t
ACt 1)=0.0,
=C(_)=_.2t
AC(6I=O.Ot

AC( t_1=1.2378•
ACI 1.5) =0.0•
aC(17)=O.O,
AC( 19! =0.004,
JC(211=2.3•
AC(25)=0o0•
aC( 26}=0. 00916,
JC(28)=0.0076•
AC{ 31}=700.0,
=C(36) =0.0,
AC( 381=0.0,
AC(66)=0,0022,
AC(_51 =0.5,
aC147)=0.0043,
aC(481 =0.5,
AC(501=O.O,
aCl5t)=O.O,
ACI 57)=0.0,
/IC(60) =O.Ot

,_C(64) =0.0,
=Clb6)=O .0,
aC(68) =0.0,
IC( 70}_=0 o0•
ACITL } =6600.0•
aC172)=O.O•
aC173]=L330.O,
AC( 75)=Z675.0,
JCl841 =0.004,
aC185) =0. 5,

lO0



[_?UT OATA - WAAT$ EXAMPLE

AC(86|=0.00/.,
ACf89)=1o1
iC(q2)'-O.OO?5t
AC(O6),,O.OOTS t
4C(e8;"0. IZ,
JC [ 102 )-O.O00I •
AC(1151=0.015,
JC (116 }=O.O04v
AC( t17}=2_00,0,
AC( llB}=O.SE_t
AC( 121} =l. 12_,
JC( 122;,'0.336,
ACI 1.23 } =I..0,
AC{ 124;-0.01375,
AC(125),,I.0,
AC! 126 }"0. 1095,
AC(127)"1._425,
4C( 1291 =0. OL 14.,
JC(130)=0.637,
AC(1321=O. 534.,
JC ! 134.)=0.05, J[END
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1

NCN-ZERO t_EIGHT CCEFFIC|ENTS

AC( 4.1 - 4..20000
ACI 14) - 1.23780
AC(19) - .400000E-02
AC( 211 ,. 2.30C00
AC( 2.6 I " ,gI6000E'02
AC( 21_) = ,760000E-02
AC( 29! " .330000E-03
AC( 301 " .500000
AC( 311 " 7¢0,000
AC( 32) " 1782.63
AC( 33) " .300000E-02
AC( 34'| = 1994',53
ACI 35) ,, .320000E-02
AC(40) - .590000
AC(42) - .230000
4C( 44.1 - .220000E-02
AC(45) =, .500000
AC(4.7) = .430000E-02
AC( 48) " .500000
AC( 531 • k.34500
AC( 54"1 ,, L.O0000
AC(58) " .7gOOOOE--01
JC( 711 - 6600,00
AC( /31 • 1330.00
AC( 751 ,, 2675.00
AC(7_) - .608000
AC(81) - l.O0000
AC(82) = .lO0000
AC(84) - .4COOOCE-O2
AC( 85l ,, .500000
AC(86) - .4CCOCOE-02
AC( 891 - l.lO000
AC(qO) ,, l. O0000
4C( 021 = .750000E-'-02
ACt 94) ,, .750000E-02
AC(g8) - .120000
AC(IOl) • .705000
aC(102) - .100000E--03
AC(104) • .316000
AC(106 | ,, 117.350
AC(IO?| " .294000
AC(IIO) = • IO0000E-05
ACKLLI) " .903000
AC(ll2) - l. COOOO
AC(113) = i.O0000
AC(LI4| "- .361000
iC(llS; • .150000E-O1
AC(II6i = .4OOOOOE-'-OZ
AC1117) = 2400.00
AC(II_) - • 584.0Q0
AC(120) - .LCCOOOE--05
AC(IZl| • l.lZ400
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NON-ZEROWEIGHT COEFFICIENTS

AC(1221 = .334000
AC(223) = 1.00000
ACI12_I - .137500E'-.01
AC(12_1 - 1.00000
AC(IZ6! - .109500
AC(127) - 1.442_0
AC(129! - .114000[--01
AC(I3QI - .637QO0
AC(1321 - .$340G0
AC(136! = .5C0000E-01
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k ETTED AREAS

DESIGN DATA

GROSS BODY
FUEL TANKS
OXIDIZER TANKS

PLAN AREAS

WING
VERTICAL SURFACES
HORIZONTAL SURFACES
FAIRINGS

THERMAL PROTECTION SYSTEM

DIMENSIONAL DATA

WING GECMETRIC SPAN
WING STRUCTURAL SPAN

WING THICKNESS AT ThECRETICAL ROOT
TOTAL INLET CAPTURE AREA

ROCKET ENGINE _REA RATIO
TOTAL INLET LENGTH
TOTAL RAMP LENGTH

BODY LENGTH
BODY HEIGHT
FUEL TANK VCLUME

OXIOIZER TANK VOLUME

ENGINE DATA

ENGINE TYPE
NUMBER CF ENGINES

THRUST OF ONE ENGINE
THRUST SCALING FACTCR
NUMBER eF IELETS
REFERENCE ENGINE AIRFLOW

ROCKET ENGINE CHAMBER PRESSURE
TURBORAYJET INLET PRESSURE (UPPER)

TURBORAMJET INLET PRESSURE (LCWER)

WEIGHTS

PAYLOAD
MAIN IMPULSE PPOPELLANT
ESTIMATED TAKECFF _EIGHT

ESTIMATED LANDING WEIGHT

32800.00
0,0
0.0

11579.00
[380.00

1.00
0.0

62300.00

161.00
93.71
11.46

0.0
80. CO

O.O
0.0

350.00

20. C0
14r3200.00
53100.130

ROCKET
Z2 .CO

670000.00
1.00

1.00
L22.10

1000.00

176 • CO

66.00

60000.00
¢400000.00
70OO000.00

900000,00
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DESIGN CATA

CTHER DESIGN DATA

NUMBER OF CREH
DESIGN ALTITUDE
DESIGN NACH RUNBER
_ACN NUMBER FACTOR
GEOMETRICAL CUT OF ROUN0 FACTOR
OX[OiZER TC FUEL HIXTURE RATiC
ACS OXIDIZER TO FUEL _[XTURE RATIO
HAX[MUM DYNAMIC PRESSURE
NUHBER OF FUSELAGE FUEL TANKS
TAIL "YPE COEFF[CIEhT
ULTIMATE LOAO FACTOR
PROPELLANT TYPE
SHAPE

2.(:0
60000.00

4.50
1.00
1.00
6.00
O.G

2500.60
2.C0

3.T5
CRYOGEN IC

AIRCRAFT
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NO
DRY

WE [GHT

683039.
676188 •
676975.

_ASS

EMPTY
WEIGHT

765004.
757330.
75_g72.

[TERATICN

LANOING
WEIGHT

840141 •
81.2456.
831092.

ENTRY
NEIGHT

885Lz,!,
876713.
87z,927.

TAKEOFF
HEIGHT

5320341.
5311913,
5310127.

107



_ _/ °"

_ E I GHT ST_T EM ENT

AEROOYNAMIC SURFACES
WING
VERTICAL SURFACES
HORIZONTAL SURFACES
FAIRINGS

66539.
i1943.

O.
O,

78682.

BOOY STRUCTURE
BASIC STRUCTURE
SECCNOARY STRUCTU#E
THRUST STRUCTURE
INTEGRAL FUEL TANKS
INTEGRAL OXIDIZER TANKS

606 O0 •
O,

61360.
91218o
28355.

20t536.

ENVIORNMENTJL PROTECTION SYSTEM
INSULATION q7290.
COVER PANELS Go

97290.

LAUNCH AND RECOVERY SYSTEMS
LAUNCH SYSTEM O.
LANOING GEAR 61361.

61361.

MAIN PROPULSION SYSTEM
ENGINES 124504.
ENGINE MOUNTS 1036.
FUEL TANKS O.
OXIDIZER TANKS O.
FUEL TANK INSULATION O.
CX[OIZER TANK _NS_LATICN O.
FUEL SYSTEq 22923.
OXIDIZER SYSTEM 6463T.
PKCPELLANT PRESSURIZATION SYST O.
INLET SYSTEM O.

lq309T.

ORIENTATION ANO SEPARATION SYSTEMS
GIRSAL SYSTEM O.
ATTITUDE CONTROL SYSTE_ [2055,
ATTITUO5 CDNTOL SYSTEM TANKAG_ O.
AERODYNAMIC CONTROL SYSTE_ I¢602.
SEPARATION SYSTEM O.

26657.

POMER SUPPLY
ELECTRICAL SYSTEM
HYDRAULIC/PNEUMATIC SYSTEP

27699.

JV [DNICS SYSTEM 6600.

CREW SYSTEMS 2675.

DRY _EIGHT 67_9T_.
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WEIGHT S T A T E M E N'T

DRY _dE[GHT

CESIGN RESERV_

EMPTY WEIGHT

PAYLOAO

CREW

RESIDUAL PROPELLANTS
TRAPPED FUEL
TRAPPED OXIDIZER

LANDING _E IGHT

ATTITUDE CONTROL SYSTEM PROPELLANTS
FUEL
OXIDIZER

ENTRY hEIGHT

_AIN PROPELLANTS
FUEL
CXIDIZER

RESERVE PROPELLANTS
FUI::L
CXIOIZER

INFLIGHT LOSSES

TAKECFF WEIGHT

63836 •
O.

628571.
3771428.

80997.

2515.
15086.

40000.

1330.

33132.

4.3836.

4.400000.

17600.

17600.

674.975.

755972.

831092.

874.927.

53t0127.

o
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